해당 강의에서는 CNNs을 다루기 전 RNN의 단점에 대해서 먼저 다룬다. RNN은 Prefix(접두사) context를 모두 포함하게 되며 Piece of sentence로 나누지 못한다는 단점이 있고, Sequence to Sequence의 모델을 살펴볼때 앞 단 Encoder부분의 RNN에서 Decoder로 보내주는 과정의 Last hidden state는 Last token에 영향을 많이 받게 된다. 또한 단어의 길이가 길어지면 정보의 손실이 발생할 수 있다는 것이 큰 문제이다. GRU나 LSTM 등 모델을 사용하거나 Encoder 부분에 Attention을 사용해 문제를 보완하곤 했다. CNNs CNNs 에서는 특정 길이로 Sub-sequence로 분할한 후 Feature를 추출하는 과정으로 접..