Kernel Function 2

[Deep Learning] RBF : Radial basis function

RBF는 SVM을 다룰 때도 많이 언급되는 내용이다. 딥러닝에서의 RBF 뉴럴네트워크란 Gaussian basis function을 이용하는 것으로, μσ를 가지는 정규분포의 선형결합으로 데이터의 분포를 근사하는 것을 의미한다. 일반적인 MLP는 초평면으로 데이터를 분할하지만, RBF 뉴럴네트워크의 경우 각 데이터에 맞는 Kernel function을 이용하기에 비선형적이고, MLP보다 학습이 빠르다. 저차원 공간에서 선형 분리가 되지 않는 데이터를 분리하고자 하면 고차원으로 확장해 초평면을 도입해 분리하는 등의 형태로 분리할 수 있는데, 이때 저차원 공간의 데이터를 고차원 공간으로 매핑시켜주는 함수가 바로 커널 함수(Kernel function)이다. 커널 함수는 Gaussian..

Deep Learning 2022.03.21

[Bayesian] Bayesian Deep Learning - Random Process

본 자료는 edwith 최성준님이 강의하신 Bayesian Deep Learning 강의를 참고하였다. 핵심 키워드 Random process, Realization ,(Brownian motion), Mean, Covariance, Kernel function, Stationariy Random Process random process는 random variable의 확장판이라고 생각하면 된다. random variable 에서 sampling을 할 때 가우시안 분포에서는 하나 씩 도출되지만 멀티 가우시안, GAN에서 사용하는 여러 차원의 가우시안, 무한차원의 가우시안 분포를 정의하기 위해 random process를 사용한다. random process를 함수들의 공간..

1
반응형