NBCF 2

[Recommender System] UBCF vs IBCF

앞 글에서 이웃 기반 방법론의 수식에 대해서 간략히 설명했다. 이웃 기반 방법론은 사용자 기반 모델, 아이템 기반 모델이 존재하는데 일반적으로 아이템 기반 모델이 성능이 조금 더 좋다고 한다. 왜 그럴까? 총 3가지 이유를 거론할 수 있을 것이다. 1. 시간 복잡도 온라인 쇼핑몰을 보면 실제 사용자 수는 엄청나게 많지만 사용자 수에 비해서 아이템 수는 상대적으로 적은 것이 일반적이다. 우리가 NBCF(Neighbor Based Collaborative Filtering)을 구현할 때를 생각해보자. n은 사용자의 수, m은 아이템의 수라고 가정하면, 사용자 간의 유사도를 계산하게 되면 사용자(u)의 이웃의 유사도를 계산하기 위해서는 n1번의 연산이 들어가게 되고, 아이템 간의 유사도를 계산..

[Recommender System] 이웃 기반 방법론 - Cosine, Pearson

이웃 기반 방법론은 사용자-사용자 간 유사도 혹은 상품-상품 간 유사도를 이용하자는 아이디어에서 시작됐다. 이웃 기반 모델에서는 다음과 같은 두 가지 기본 가정을 설정한다. NBCF(Neighbor Based Collaborative Filtering)라고 불리기도 한다. 1. 사용자 기반 모델 : 유사한 사용자들은 같은 상품에 대해 비슷한 평점을 부여한다. 2. 아이템 기반 모델 : 유사한 상품은 동일한 사용자에세 비슷한 방식으로 평점이 부여된다. 사용자 기반 이웃 모델을 구성하기 위해서는 타깃 사용자(i)와 유사한 사용자를 찾기 위해서는 다른 모든 사용자와의 유사도를 계산해야한다. 유사도 계산을 수행할 때에는 사용자마다 본인의 기준이 다르기 때문에 평점 스케일이 다를 수 있음을 고려하고 계산을 수..

1
반응형