RBF는 SVM을 다룰 때도 많이 언급되는 내용이다. 딥러닝에서의 RBF 뉴럴네트워크란 Gaussian basis function을 이용하는 것으로, $\mu$와 $\sigma$를 가지는 정규분포의 선형결합으로 데이터의 분포를 근사하는 것을 의미한다. 일반적인 MLP는 초평면으로 데이터를 분할하지만, RBF 뉴럴네트워크의 경우 각 데이터에 맞는 Kernel function을 이용하기에 비선형적이고, MLP보다 학습이 빠르다. 저차원 공간에서 선형 분리가 되지 않는 데이터를 분리하고자 하면 고차원으로 확장해 초평면을 도입해 분리하는 등의 형태로 분리할 수 있는데, 이때 저차원 공간의 데이터를 고차원 공간으로 매핑시켜주는 함수가 바로 커널 함수(Kernel function)이다. 커널 함수는 Gaussian..