Paper review/Natural Language Processing 5

UniMath: A Foundational and Multimodal Mathematical Reasoner (EMNLP'23)

Contents Abstract 최근 NLP 기술이 많이 발전하고 있으나, Mathematical Modalities에 대한 정보를 제대로 이해하고, 풀이하는 Task에서는 우수한 성능을 발휘하지 못하고 있었다. 본 논문에서는 수학 문제를 잘 풀고, 잘 해석하는 모델인 UniMath를 제안하였으며, UniMath는 T5 모델을 통해 Text 정보를 추출하고, VAE를 통해 이미지 정보를 추출하여 수학 문제를 잘 풀 수 있는 모델이다. Introduction and Our Approach Mathematical Reasoning 에서는 Math Word Problem (MWP) 를 어떻게 해석할 것 인지가 중요하다. 풀어서 설명하면, 수학적 기호가 어떤 의미를 가지는 지 알고 있어야 해당 문제를 풀 수 있..

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks (EMNLP'19)

Contents Abstract BERT, RoBERTa 등의 모델이 STS(Semantic Textual Similarity)과 같은 분야에서 우수한 성능을 발휘하고 있다. 그러나, 두 문장 자체가 전부다 임베딩에 들어가고 계산되어야 하기 때문에 Computational Overhead가 발생한다. 해당 문제를 해결하고자 Sentence-BERT (SBERT)를 제안한다. BERT를 사용하여 문장 간의 유사도를 계산하면 65 시간이 소요되는 것에 비해, SBERT를 사용하면 5초 만에 이를 가능하게 한다. Introduction Siamese과 Triplet Networks를 활용한 BERT 즉, Sentence-BERT를 통해 Large-Scale의 입력 데이터에서도 문장 간의 유사도 비교(Seman..

BERTopic: Neural topic modeling with a class-based TF-IDF procedure

Contents Abstract 토픽 모델링은 수집된 문서 내에서 잠재되어 있는 토픽을 추출하는 기법이다. 본 연구에서는 Clustering task를 기반으로 토픽을 추출하는 기법인 BERTopic 기법을 제안한다. BERTopic은 class-based TF-IDF 기법을 통해 토픽을 추출한다. 구체적으로 사전 학습된 트랜스포머 모델을 사용해 문서 임베딩을 생성한 후, class based TF-IDF 기법을 사용하여 토픽 representation을 생성한다. Introduction 전통적인 토픽 모델링 기법으로는 LDA(Latent Dirichlet Allocation)과 NMF(Non-Negative Matrix Factorization) 기법이 있다. 그러나 이와 같은 기법은 단어 간의 관계(..

Exploiting BERT for End-to-End Aspect-based Sentiment Analysis (2019)

Contents 본 논문은 2019년 EMNLP에서 발표한 논문이다. E2E-ABSA를 하기 위한 BERT 모델을 제안하였다. ABSA는 Aspect Based Sentiment Analysis 를 의미한다. 기존의 Sentiment Analysis는 문장 전체를 살펴보고 긍정인지 부정인지 분류하는 형태로 진행되었다. 그러나, 이는 문장 내에 다중 속성(Aspect)이 내포되어 있더라도 하나의 속성 만을 도출한다는 단점이 존재한다. 예를 들어, "이 식당은 음식은 맛있지만, 서비스는 별로다." 라는 리뷰는 음식의 맛에 대한 속성은 긍정을 나타내고, 서비스에 대한 속성은 부정을 나타낸다. 그러나, 기존 기법을 사용하는 경우 음식, 서비스에 대한 속성을 모두 긍정 혹은 부정으로 판별한다는 것이다. 본 논문에..

Bigbird: Transformers for Longer Sequences (NeurIPS'20)

Contents RNN, LSTM, GRU 이후 Transformers가 제안되고 부터 다양한 분야에서 Transformer 기반 모델이 사용되었으며, 특히 자연어 처리(Natural Language Processing, NLP) 분야에서 많이 사용되고 있다. 이번 글에서는 Transformers의 문제를 개선한 모델인 Bigbird를 제안한 논문을 리뷰하고자 한다. [Transformers], [Bigbird] Introduction BERT (Bidirectional Encoder Representations from Transformers), GPT (Generative Pre-trained Transformers) 등과 같이 Transformer-based model(이하 Transformers)..

반응형