머신러닝 4

[Linear Algebra] 노름(norm) 이란?

기계 학습(Machine Learning)에서는 벡터의 크기를 측정할 때 노름$^{\mathsf{norm}}$이라고 불리는 함수를 이용해 측정하며, 다음과 같이 표기 및 정의한다. \[ L^p = ||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}} \] $p \in \mathbb{R}, p \ge 1$이다. 일반적으로 노름은 벡터를 음이 아닌 값으로 사상(mapping)하는 것이며, 벡터 $\boldsymbol{x}$의 노름은 원점에서 점 $x$까지의 거리이다. 노름은 다음과 같은 성질을 만족하는 임의의 함수이다. $ f(\boldsymbol{x}) = 0 \Rightarrow​ \boldsymbol{x} = \boldsymbol{0} $ $ f(\boldsymbol{x} + \bo..

[pyspark] Example of pyspark ML

앞선 글에서 pyspark Session을 설정하는 법과 csv 파일을 불러오는 방법에 대해서 다루어 보았다. 이번에는 pyspark에서 csv 파일을 불러와 간단한 ML(machine Learning)을 수행해보자. from pyspark.sql import SparkSession spark = SparkSession.builder.appName('missing').getOrCreate() training = spark.read.csv('dataset/test2.csv', header=True, inferSchema=True) training.printSchema() training.show(4) inferSchema = True 로 설정해줌으로써 age, Experience, Salary 변수가 in..

Python/Pyspark 2022.02.22

[short] Deep Neural Networks for YouTube Recommendations, Paul Covington (2016)

YouTube에는 워낙 방대한 자료와 새로운 영상의 업로드, 사용자의 행동의 sparse한 부분 등의 문제로 추천하기가 엄청 어렵다. 해당 논문에서는 최상의 영상을 추천해주기 위해 Deep Neural Networks를 사용했고, 모든 상황을 고려해 추천을 해주는 시스템을 구축했다. 사용한 데이터는 YouTube 앱 화면에서 손가락의 업/다운, 제품 내 설문조사, 사용자의 언어, 영상의 언어 등 모든 것을 고려해 input으로 집어넣고 3개의 Layer를 통과해 추천영상을 제공해준다. [Layer는 Linear + ReLU로 총 3겹을 쌓았다.] Layer를 겹겹이 쌓았을 때 성능이 개선되는 것을 볼 수 있다. 결론 딥러닝을 활용했지만 여전히 정확한 예측은 어렵다. 일부항목에서는 다른 machine-le..

[CS231N] Neural Network Back-propagation

Backpropagation 이 왜 Neaural Network에서 중요할까? Backpropagation 은 어떤 함수의 gradient를 계산하는 방식이다. chain rule를 recursively( 재귀적으로 ) 적용을 하고, 이러한 계산 방식이 computational 하다고 할 수 있다. backpropagation을 하는 가장 주된 목적은 parameter를 updata하기 위함이다. parameter를 update 하면서 가장 최적의 parameter를 찾는 것이 궁극적인 목적이기 때문이다. 부수적으로는 학습한 NN을 시각화하고 해석하기 위함이다. NN 이라는 것은 하나의 함수라고 지칭할 수 있다. 만약 SVM을 이라면 convex optimization을 활용하여 단 한 번의 optimu..

반응형