본 논문은 NIPS'22 에서 발표된 논문이며, 이름에서도 알 수 있듯, Perturbation을 통해 Anomaly Detection을 수행하는 PLAD (Perturbation Learning Anomaly Detection) 기법을 제안한다. 여기서 Perturbation은 아주 작은 노이즈를 의미하며, 정상(Normal) 데이터에 작은 노이즈를 집어 넣어 성능을 개선한다는 내용이다. 이때 정상 데이터에 너무 심한 노이즈를 집어넣을 경우 오히려 성능이 저하될 수 있기 때문에 Perturbator를 제대로 구축하는 것이 핵심이며, 이 논문에서는 어떤 방식으로 수행하였는지 알아보자. $\mathbb{X} = {x_1, x_2, \cdots, x_n}$를 학습 데이터라고 표현하면, 학습 데이터로 $f(x..